Assessing Metacognitive Skills Using Adaptive Neural Networks

نویسندگان

  • Justin Anderson
  • Kouider Mokhtari
  • Arun Kulkarni
چکیده

ely perform complex cognitive tasks such as solving mathematics or reading comprehension problems. In this paper, we use an adaptive multiplayer perceptron model to categorize participants based on their metacognitive awareness and perceived use of reading strategies while reading. Eight hundred and sixty-five middle school students participated in the study. All participants completed a 30-item instrumentthe Metacognitive Awareness-of-Reading Strategies Inventory (MARSI). We used adaptive multi-layer perceptron models to classify participants into three groups based on their metacognitive strategy awareness levels using thirteen and nine attributes representing problem-solving and support reading strategies. The architecture for the neural network models is based on the input data. The number of units in the input layer is equal to the number of attributes and the number of units in the output layer is equal to the number of categories. We classified participants into three categories based on the level of awareness. The models are evaluated using th obtained from the error matrix. We obtained an overall efficiency of 86.92 and 81.89 percent with 13 and 9 input features, respectively. The results indicate that once the network is train use of reading strategies with the help of observed attributes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks

This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...

متن کامل

Decentralized Adaptive Control of Large-Scale Non-affine Nonlinear Time-Delay Systems Using Neural Networks

In this paper, a decentralized adaptive neural controller is proposed for a class of large-scale nonlinear systems with unknown nonlinear, non-affine subsystems and unknown nonlinear time-delay interconnections. The stability of the closed loop system is guaranteed through Lyapunov-Krasovskii stability analysis. Simulation results are provided to show the effectiveness of the proposed approache...

متن کامل

Hourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks

In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012